When does a category built on a lattice with a monoidal structure have a monoidal structure?

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When does a category built on a lattice with a monoidal structure have a monoidal structure?

In a word, sometimes. And it gets harder if the structure on L is not commutative. In this paper we consider the question of what properties are needed on the lattice L equipped with an operation * for several different kinds of categories built using Sets and L to have monoidal and monoidal closed structures. This works best for the Goguen category Set(L) in which membership, but not equality,...

متن کامل

A Note on Actions of a Monoidal Category

An action ∗ : V × A−→ A of a monoidal category V on a category A corresponds to a strong monoidal functor F : V−→ [A,A] into the monoidal category of endofunctors of A. In many practical cases, the ordinary functor f : V−→ [A,A] underlying the monoidal F has a right adjoint g; and when this is so, F itself has a right adjoint G as a monoidal functor—so that, passing to the categories of monoids...

متن کامل

The Monoidal Structure of Strictification

We study the monoidal structure of the standard strictification functor st : Bicat → 2Cat. In doing so, we construct monoidal structures on the 2-category whose objects are bicategories and on the 2-category whose objects are 2-categories.

متن کامل

The monoidal structure of Turing machines

Indexed monoidal algebras are introduced as an equivalent structure for self-dual compact closed categories, and a coherence theorem is proved for the category of such algebras. Turing automata and Turing graph machines are defined by generalizing the classical Turing machine concept, so that the collection of such machines becomes an indexed monoidal algebra. On the analogy of the von Neumann ...

متن کامل

A Monoidal Category for Perturbed Defects in Conformal Field Theory

Starting from an abelian rigid braided monoidal category C we define an abelian rigid monoidal category CF which captures some aspects of perturbed conformal defects in two-dimensional conformal field theory. Namely, for V a rational vertex operator algebra we consider the charge-conjugation CFT constructed form V (the Cardy case). Then C = Rep(V ) and an object in CF corresponds to a conformal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fuzzy Sets and Systems

سال: 2010

ISSN: 0165-0114

DOI: 10.1016/j.fss.2009.12.018